ON AUTOMATION OF CTL* VERIFICATION FOR INFINITE-STATE SYSTEMS

Heidy Khlaaf Byron Cook Nir Piterman

University College London
University of Leicester

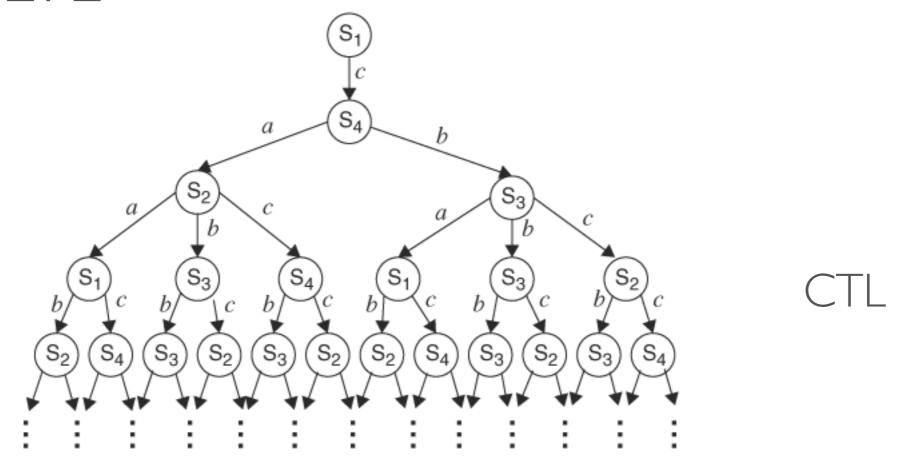
AUTOMATED CTL* VERIFICATION

- First known tool for automatically proving CTL* properties of infinite-state programs.
- Solution based precondition synthesis over prophecy variables which determine nondeterministic decisions regarding which paths are taken.
 - Prophecies: Variables that summarize the future of the program execution.

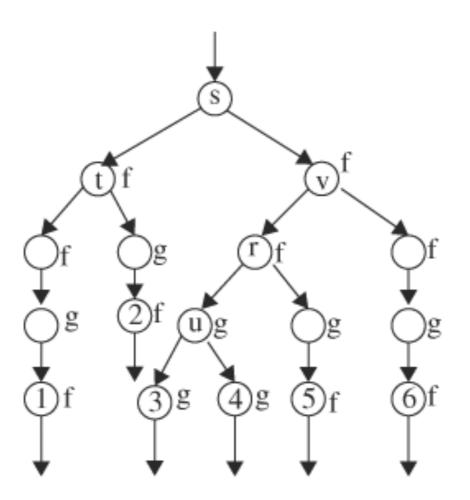
TEMPORAL LOGIC

- Logic reasoning about propositions qualified in terms of time.
- Used as a specification language as it encompasses safety, liveness, fairness, etc.
- Most commonly used sub-logics are CTL*, CTL (state based), and LTL (trace based).

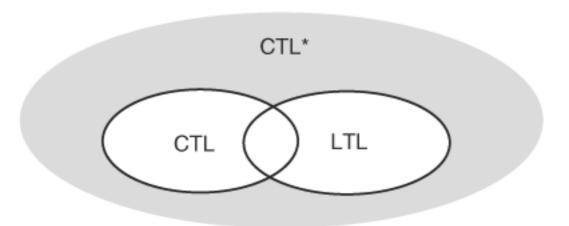
CTL VS LTL



CTL*



.....



CTL

- Reasoning about sets of states.
- Reasoning about non-deterministic (branching) programs.
- $\phi ::= \alpha \mid \neg \alpha \mid \phi \land \phi \mid \phi \lor \phi \mid AX\phi \mid AF\phi \mid A[\phi \lor \phi] \mid EX\phi \mid EG\phi \mid E[\phi \cup \phi]$
- A ϕ All: ϕ has to hold on all paths starting from all initial states.
- E ϕ Exists: there exists at least one path starting from all initial states where ϕ holds.

CTL

- $\times \phi$ Next: ϕ has to hold at the next state.
- G ϕ Globally: ϕ has to hold on the all states along a path.
- F ϕ Finally: ϕ eventually has to hold.
- $\phi_1 \cup \phi_2$ Until: ϕ_1 has to hold at least until at some position ϕ_2 holds. ϕ_2 must be verified in the future.
- $\phi_1 W \phi_2 Weak until: \phi_1$ has to hold until ϕ_2 holds.

LTL

- Reasoning about sets of paths.
- Reasoning about concurrent programs.
- $\psi ::= \alpha \mid \psi \land \psi \mid \psi \lor \psi \mid G\psi \mid F\psi \mid [\psi \lor \lor \psi] \mid [\psi \cup \psi]$.

CTL*

- CTL* can express both CTL, LTL, and properties requiring path and state based interplay.
- $\phi := \alpha | \neg \alpha | \phi \land \phi | \phi \lor \phi | A\psi | E\psi$
- $\psi ::= \phi \mid \psi \land \psi \mid \psi \lor \psi \mid G\psi \mid F\psi \mid [\psi \lor \lor \psi] \mid [\psi \cup \psi]$

CTL*

- •LTL: Can naturally express fairness: GF $p \Rightarrow$ GF q.
- •CTL: Can express existential properties.
- •CTL* allows the interplay between LTL and CTL properties:
 - "Along some future an event occurs infinitely often" (EGF)
 - $EFG(\neg x \land (EGF x))$
 - \bullet AG(EG \neg x) \lor (EFG \lor)

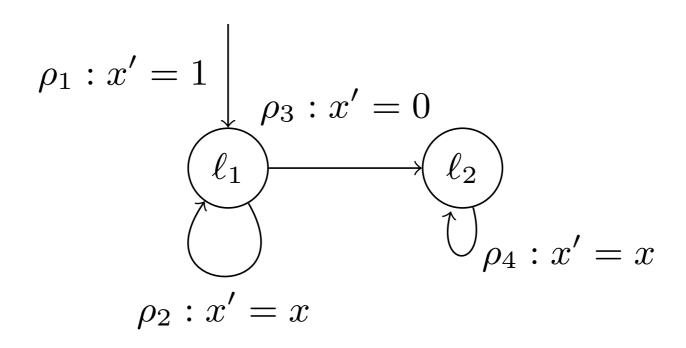
VERIFYING CTL* (OVERVIEW)

- •Recurse over a CTL* formula, and for each sub-formula θ produce a satisfying precondition.
 - •Deconstruction allows us to identify the interplay of path and state formulae.
- State formulae preconditions acquired via existing CTL techniques.
- •How to acquire sufficient path formulae preconditions that admit a sound interaction with state formulae?

VERIFYING CTL* (OVERVIEW)

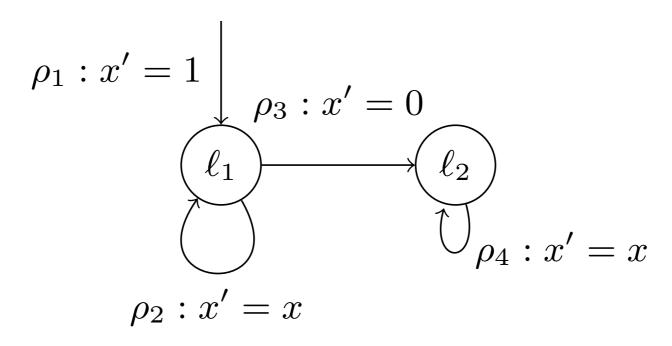
- 1. **Formula:** Over-approximate a path sub-formula to a universal CTL formula (ACTL).
- 2. **TS:** Nondeterministic decisions regarding which paths are taken are determined by prophecy variables.
- 3. Use an existing CTL model-checker.
- 4. Apply QE over prophecies to acquire sound precondition.

EXAMPLE



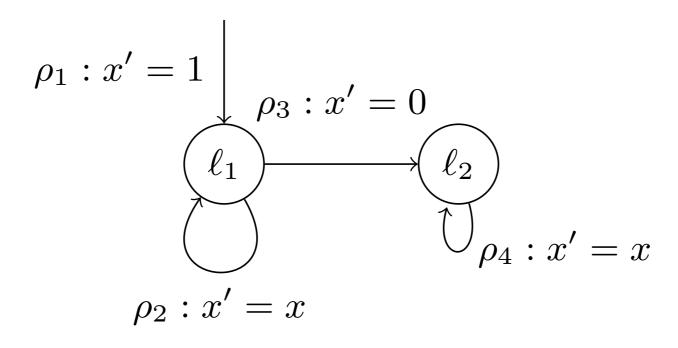
• Prove the CTL* property EFG x = 1.

APPROXIMATE



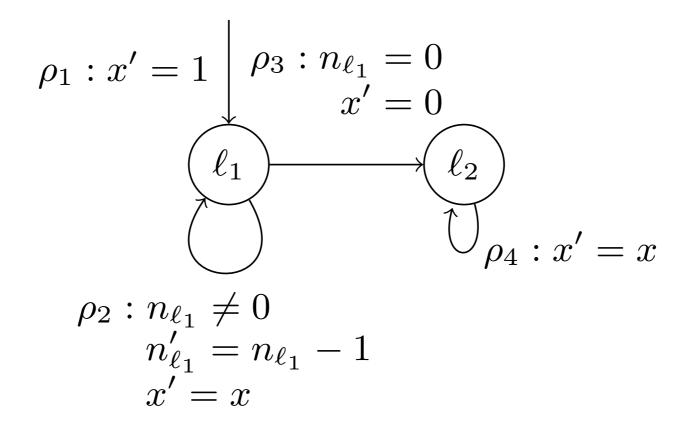
- Prove the CTL* sub-property $G \times = 1$.
 - Over-approximate to $AG \times = 1$.
 - No set of states exemplify the infinite possibilities of leaving ρ_2 to possibly reaching ρ_3 or remaining in ρ_2 forever.

DETERMINIZE



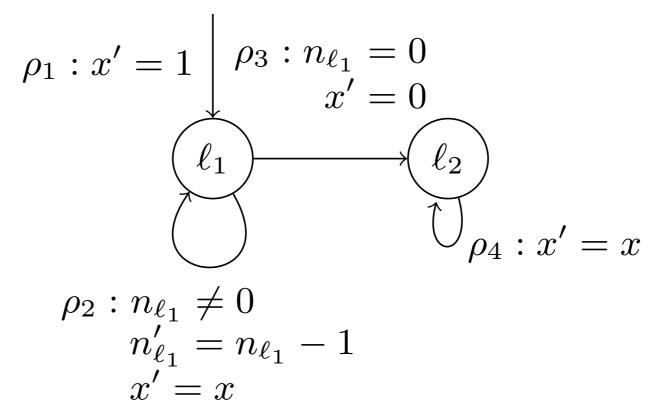
- Construct a partially determinized program over relation pairs.
 - Transitions stemming from same location, but are not part of the same strongly connected subgraph.
 - We identify (ρ_2, ρ_3) as a relation pair.

DETERMINIZE



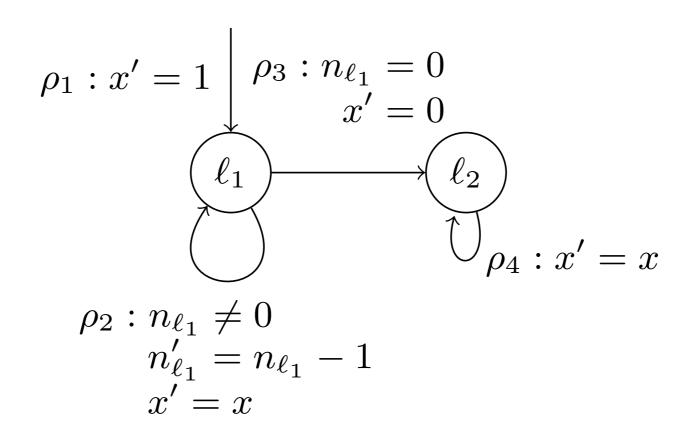
- Introduce prophecy variable (n_{L1}) associated with the relation pair (ρ_2 , ρ_3).
 - Used to make predictions about the path taken.

DETERMINIZE



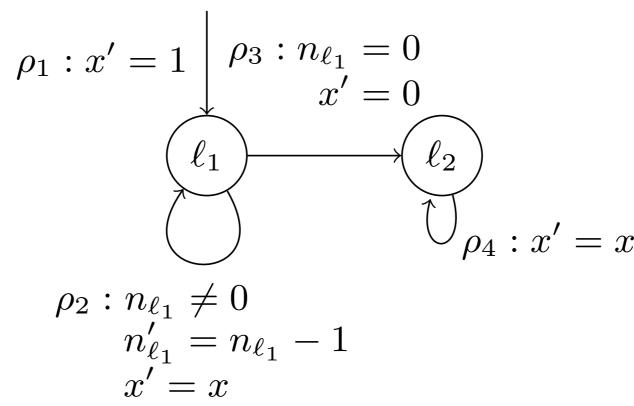
- A positive number chosen predicts the number of instances that transition ρ_2 is visited before transitioning to ρ_3 .
 - We remain in ρ_2 until $n_{L1} = 0$, with n_{L1} being decremented each time.
- A negative assignment to n_{L1} denotes remaining in ρ_2 forever, or nontermination.

PRECONDITION SYNTHESIS



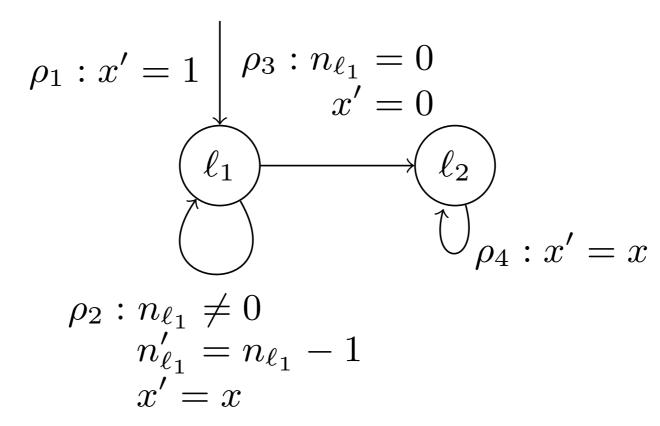
- We can now use an existing CTL model-checker!
- Returns an assertion characterizing the states in which AG x = 1.
- $a_G = (I_1 \wedge n_{L1} < 0)$ is returned.

PRECONDITION SYNTHESIS



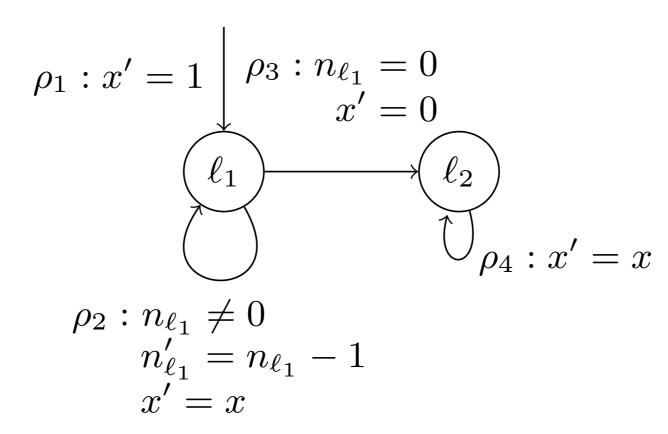
- $a_G = (I_1 \land n_{L1} < 0)$.
- Replace the sub-formula with its assertion in the original CTL* formula: EFag.

QUANTIFIER ELIMINATION



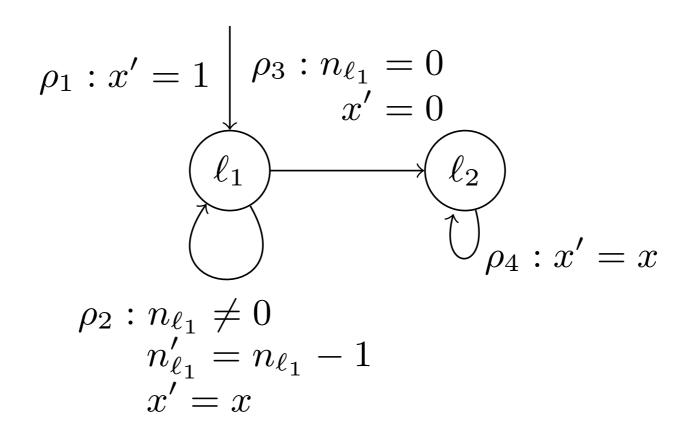
- EFa_G is a readily acceptable CTL formula.
- E exists within a larger context reasoning about paths (inner formula FG).
- To interchange between path and state formulae, we collapse determinized relations to incorporate path quantifiers via **QE**.

QUANTIFIER ELIMINATION



- Verify EFa_G over the same determinized program above.
- Precondition ($I_1 \land n_{L1} < 0$) is returned (again).
- Use QE to existentially quantify out introduced prophecy variables.

QUANTIFIER ELIMINATION



- Existential quantification corresponds to searching for some path (or paths) that satisfy the path formula.
- EFG x = 1 holds.

VERIFYING CTL*

- 1. **Approximate:** Over-approximate a path sub-formula to a universal CTL formula (ACTL).
- 2. **Determinize:** Nondeterministic decisions regarding which paths are taken are determined by prophecy variables.
- 3. **Precondition Synthesis:** Through an existing CTL model-checker.
- 4. Quantifier Elimination: Allow path formulae preconditions to admit a sound interaction with state formulae.

EXPERIMENTS

Program	LoC	Property	Time(s)	$oxed{{ m Res.}}$
OS frag. 1	393	$\overline{AG((EG(\mathtt{phi_io_compl} \leq 0)) \vee (EFG(\mathtt{phi_nSUC_ret} > 0))))}$	32.0	×
OS frag. 1	393	$EF((AF(\mathtt{phi_io_compl} > 0)) \land (AGF(\mathtt{phi_nSUC_ret} \leq 0))))$	13.2	✓
OS frag. 2	380	$EFG((\mathtt{keA} \leq 0 \land (AG\ \mathtt{keR} = 0)))$	28.3	✓
OS frag. 2	380	$EFG((\mathtt{keA} \leq 0 \lor (EF \ \mathtt{keR} = 1)))$	16.5	√
OS frag. 3	50	$EF(\mathtt{PPBlockInits} > 0 \land (((EFG\ IoCreateDevice = 0)$	10.4	✓
		$\lor (AGF \; \mathtt{status} = 1)) \land (EG \; \mathtt{PPBunlockInits} \leq 0)))$		
PgSQL arch 1	106	$EFG(tt > 0 \lor (AF \ \mathtt{wakend} = 0))$	1.5	×
PgSQL arch 1	106	$AGF(tt \leq 0 \land (EG \ wakend \neq 0))$	3.8	√
PgSQL arch 1	106	$EFG(\mathtt{wakend} = 1 \land (EGF\ \mathtt{wakend} = 0))$	18.3	√
PgSQL arch 1	106	$EGF(AG\ \mathtt{wakend} = 1)$	10.3	√
PgSQL arch 1	106	$AFG(EF\ \mathtt{wakend} = 0)$	1.5	×
PgSQL arch 2	100	$AGF\ \mathtt{wakend} = 1$	1.4	√
PgSQL arch 2	100	$EFG\ \mathtt{wakend} = 0$	0.5	×
Bench 1	12	$EFG(\mathtt{x} = 1 \land (EG\ \mathtt{y} = 0))$	1.0	✓
Bench 2	12	$EGF \; \mathtt{x} > 0$	0.1	✓
Bench 3	12	$AFG\;\mathtt{x}=1$	0.1	✓
Bench 4	10	$AG((EFG\; \mathtt{y}=1) \land (EF\; \mathtt{x} \geq \mathtt{t}))$	0.5	×
Bench 5	10	AG(x = 0 U b = 0)	T/O	_
Bench 6	8	$AG((EFG x = 0) \land (EF x = 20))$	0.1	✓
Bench 7	6	$(EFGx = 0) \land (EFGy = 1)$	0.5	×
Bench 8	6	$AG((AFG\ \mathtt{x}=0) \lor (AFGx=1))$	0.5	√

RECAP

- The first known method for symbolically and automatically proving CTL* properties of (infinite-state) integer programs.
- Solution based on program transformation which trades nondeterminism in the transition relation for nondeterminism explicit in prophecy variables.
- Implemented as an extension to **T2**: https://github.com/hkhlaaf/T2/tree/T2Star

Eleventh Haifa Verification Conference

HVC2015

November 17 – 19 Haifa, Israel

Submission deadline: July 24, 2015

